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Abstract. This chapter introduces the concept of situated analytics that
employs data representations organized in relation to germane objects,
places, and persons for the purpose of understanding, sensemaking, and
decision-making. The components of situated analytics are characterized
in greater detail, including the users, tasks, data, representations, interac-
tions, and analytical processes involved. Several case studies of projects
and products are presented that exemplify situated analytics in action.
Based on these case studies, a set of derived design considerations for
building situated analytics applications are presented. Finally, there is a
an outline of a research agenda of challenges and research questions to
explore in the future.

� Introduction

People are increasingly interested in understanding data directly associated with
objects, locations, or persons in their everyday life. For example, imagine hunting
for a house by walking through the neighborhood in which you want to live.
Your search could be informed by social media posts about the area appearing in
virtual signs on the ground, dynamic census data rising above the houses, and
historical tra�c data rendered on the street in a way that reflects the ebb and flow
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throughout a typical day. In an industrial context, imagine a team of professionals
collaboratively reorganizing machines and stations on a factory floor. As they
walk around together, dynamic data would appear embedded in and around the
floor. To demonstrate this concept, the data could be related to physical space,
safety, economics (e.g., layout constraints related to past manufacturing data),
power, ventilation, ergonomics and worker preferences, past accidents, and legal
concerns.

In these examples, the individuals would be interested in discovering, inter-
preting, and communicating meaningful patterns in data that is directly relevant
to, and integrated into, the physical space all around them. For the first time
both the technology—such as sensors, wearable displays, natural user interfaces,
and augmented reality devices—as well as the data sources—such as dynamically
updating social media, ubiquitous sensor information, and large-scale movement
data—exist to make this vision a reality. To cope with this massive quantity of
data, analytics techniques are required to help the user, much in the same way
visual analytics grew out of the visualization research domain. Visual Analytics
(VA) has been defined as “the science of analytical reasoning facilitated by visual
interactive interfaces” [���].

Analogously, the concept of Situated Analytics [��] (SA) is the use of data
representations organized in relation to relevant objects, places, and persons in
the physical world for the purpose of understanding, sensemaking, and decision-
making. For example, virtual labels on a physical container provide semantic
information for the analyst, as does the proximity of di�erent objects. Situated
analytics allows users to access the power of the cloud (data and analysis)
seamlessly analyzing virtual data situated in the physical world simultaneously.

Imagine walking into a pharmacy and placing an order for your prescriptions.
While you are waiting for your order, you browse the shop for other purchases.
Through the use of Internet of Things technology [�] and situated analytics,
you will be reminded of items you might wish to replenish. This is performed
by highlighting items in your field of view using augmented reality to draw
your attention. You notice a natural supplement you have not tried that looks
interesting. Situated analytics can provide a number of supporting functions for
you. First, it can recognize the supplement and determine if the ingredients are
compatible with your prescription and if you are allergic to the item. Second,
you can compare di�erent brands of the supplement by placing them next to
one another. The system will automatically perform an analysis and compare
the products. Third, a visualization summarizing the reviews, keywords, and
ratings can be embedded on the store shelf right next to the supplement. Finally,
the user can inspect more detailed information about the product by selecting
portions of the label to bring up Augmented Reality (AR) [��] information in
greater detail.

Situated analytics and immersive analytics are complementary techniques
that have emerged at similar times. Situated analytics draws from the domains
of Visual Analytics and Augmented Reality to support a new form of in-situ
interactive visual analysis. First published as a novel interaction, and a visual-
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ization concept for reasoning support which incorporates four primary elements:
situated information, abstract information, augmented reality interaction, and
analytical interaction [��]. Where immersive analytics [�] covers a broad range
of display techniques and technologies [��,��,��].

The degree of immersion you might associate with an instance of situated
analytics depends on your definition of the word immersion. If one considers
immersion to reflect deep mental involvement, it is unclear that situated analytics
would be any di�erent (from an immersion standpoint) from non-situated analytics
In other words, the situated nature of the analytical task would not necessarily
bring any new immersion-related considerations or a�ects to the task. If one
considers immersion to reflect the degree to which the analyst is surrounded by
an engrossing total environment—including the real environment, virtual data,
and analytics—then situated analytics could be considered inherently immersive,
as the environment where the virtual data and analytics are situated surrounds
the analyst. If instead one considers immersion to be associated solely with the
virtual data and analytics (not including the real environment), then one’s sense
of the degree of immersion might depend on the degree to which the virtual data
and analytics surround the analyst, i.e., the degree of immersion is proportional
to the spatial extents of the virtual data and analytics.

In ����, Slater and Wilbur defined the concept of immersion as being more
generally related to the characteristics of a system, and in particular to the senso-
rimotor contingencies that the system supports [��]. Sensorimotor contingencies
refer to the available actions humans employ to perceive things using vision
and other sensory modalities, for example moving one’s body, head, or eyes to
obtain a better visual or aural perspective [��,��]. This notion of immersion has
been widely used in the Virtual Reality and Augmented Reality communities.
If one adopts this perspective, then the degree of immersion is related to the
sensorimotor contingencies a�orded by the system presenting the virtual data
and analytics to the user. If, for example, a person is using an AR system with
a relatively narrow visual field of view, the user might not be able to see the
complete virtual data and analytics without scanning their view left-right or
up-down. From a Slater and Wilbur perspective, such a system would be less
immersive than a system that presented the virtual data and analytics completely
(in the same resolution) without the need for explicit movement on the part of
the user. This same concept would apply beyond vision to other senses including
sound, smell, and touch (haptic senses). In this view, the degree of immersion is
essentially proportional to the sensorimotor contingencies.

�.� Comparison to Other Fields and Concepts

Situated analytics has a close relationship with a number of fields. Table �
compares a number of fields from low to high of their Situatedness versus their
Analytic Level. Where situatedness is the degree the information and person are
connected to the task, location, and/or another person, and the analytic level is
the quantity of analytic processing of the information. You will notice situated
analytics requires high levels of both situatedness and analytics.
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Situatedness Analytic Level Low Analytic Level High
High Situation Awareness Situated Analytics
Low Information Displays Visual Analytics

Ambient Displays Traditional Analytics
Table �: Situatedness versus Analytic Level

Below is a set of brief overviews of some of the related fields and concepts:

�. Augmented/Mixed reality [�,��] is a dominant form of presentation of
information in situated analytics, and interaction techniques from these fields
can inform new interaction techniques for situated analytics.

�. Wearable and mobile computing [��] support the user operating in
unprepared physical locations and leverages such technologies as interaction,
device form factor, and display techniques. This mobile nature is required by
many situated analytics applications.

�. Situated computing [��] investigates computational devices that detect,
interpret and respond to aspects of the user�s local environment.

�. Situated visualization [��,��] refers to data representations that are related
to and portrayed in their physical environment. Sensemaking is achieved
through the combination of the visualization and the relationship of that
visualization to the immediate physical environment.

�. Embedded data representations [��] focus on the use of visual and
physical representations of data that are deeply integrated in the physical
spaces, objects, and entities the data refers to. This closer association with
physical objects and virtual information is critical for situated analytics.

�. Contextual computing overlaps with situated analytics; Chen and Kotz [��]
defines context as a set of environmental states and settings that �) deter-
mines an application’s behavior or �) when an application event arises then
is of interest to the user.

�. Ambient displays [��] employ the user’s complete physical environment as
an interface to their virtual information space. Situated analytics endeavors
to bring the users analytic information space to be in-situ to physical objects
and spaces of interest.

�. Ubiquitous computing, according to Mark Weiser’s [��] vision, consists
of embedding numerous computers in the user’s physical environment, and as
such make the computation device fade into the user’s background. The goal
of SA is to bring visual analytics to bear on problems away from the user’s
workstation and into the physical world. This can be performed through
either ubiquitous computing or wearable computer or even mobile computing.

�. Visualization beyond the desktop [��,��,��] is a broad research agenda
of which situated analytics and situated visualization is a component. Instead
of the ubiquitous mouse and keyboard, such visualization systems focus
on touch-based, pen-based, or gestural interaction methods with multiple
form factors (smartphones, smartwatches, tablets) and both large and small
displays (HMDs, powerwalls, wearable displays, etc.).
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��. Ubiquitous analytics [��] is “... amplif[ying] human cognition by embedding
the analytical process into the physical environment to enable sensemaking
of big data anywhere and anytime.” Several tools and toolkits have been
proposed to support this practice [�, �]. Situated analytics builds on this
concept by focusing on place as an index.

��. Personal visual analytics (PVA) is concerned with assisting visual ana-
lytics with a personal context [��]. The aim of personal visual analytics is to
support people with the ability to acquire an awareness of, explore, and learn
from data around them and from their personal context. This is a similar
goal for situated analytics, yet again without the immersive aspect.

�.� Visual Analytics and Augmented Reality

Situated Analytics leverages two research domains—VA and AR—to deliver
analytical reasoning in the world around the user [��]. VA is a multidisciplinary
research domain spanning analytical reasoning techniques with visualization,
while AR enhances the physical worldview with a visual overlay of registered
contextual information in real-time. Most of situated analytics combines VA
techniques with AR techniques for in-situ registration of information onto the
physical space.

AR has been shown to be a useful tool for visualization [��]. Kalkofen et
al. [��] considered three types of AR visualization techniques: �) data integration,
�) scene manipulation and �) context-driven. Data integration techniques enhance
the smooth mixing of the virtual information with the physical world [��,��].
Scene manipulation techniques manipulate the real scene to augment information.
A few examples of this smooth mixing are as follows: the relocation of physical
objects [��], color corrections [��], and diminished reality techniques [��]. To
incorporate some of the user�s influence on the visual presentation of information,
context-driven techniques have been employed [��].

A major research challenge remains with the limitations of current AR display
technologies [��]. AR display technologies and techniques primarily fall into two
categories: Visual Augmented Reality (VAR) and Spatial Augmented Reality
(SAR). In the case of VAR the virtual content is overlaid into the user’s visual
field, for example via a head-worn (head-mounted) display (HMD) device, a
handheld device such as a mobile phone, and—some day—special AR contact
lenses [��], see the example in Figure �. This is the most common form of AR,
and thus often the implied form when someone refers to AR.

In the case of SAR, virtual content is displayed directly on objects in the
user’s physical space [��,��,��]; typically using digital projectors and a mapping
technique initially known as shader lamps [��,��]. More recently this concept is
referred to as projection mapping, see examples in Figure �. When the virtual
content is not associated directly with any physical object, e.g., as would be the
case with air flow visualization information or floating virtual labels attached
to physical objects, then VAR would be more appropriate. When the virtual
content is to appear (or is intended to appear) directly on the surface of a physical
object, SAR becomes an option. Some advantages of SAR in such situations
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a b

Fig. �: An example of Visual Augmented Reality (VAR), where the virtual imagery
is overlaid onto the user’s visual field. The left image (a) shows a Microsoft
HoloLens device. The right image (b) shows a person wearing a Microsoft HoloLens
device, and a depiction of what they would see—Minecraft [��] game objects
visually overlaid onto the real world table, couch, etc.

include the natural coincidence of vergence and accommodation of the human
visual system (a problem with VAR), and not requiring devices to be worn or
held—a particular advantage in group settings, where one would like to see other
individuals naturally as they discuss the issues at hand.

�.� Motivation

Why do we need situated analytics? This method of sensemaking has a great
potential to have a major impact on people’s use and application of Big Data
in their everyday lives. The significance of this method of sensemaking is a new
research domain that provides the intersection of many research concepts. Situated
analytics can be beneficial for data exploration and information comprehension.
There are three ways situated analytics can enhance sensemaking:

�. more understandable information presentation by immediately associating
information with the germane physical objects (i.e., place acting as a spatial
index),

�. more natural method for information exploration interactions by allowing
the user to touch and manipulate the germane physical objects (i.e., the use
of natural interaction), and

�. more comprehensive information analysis providing contextual and overview
information (i.e., contextual synthesis of data).

Critical to the success of situated analytics for the appropriate application of
this new technique for casual and expert users with real world tasks in actual
physical settings are techniques that enhance the user’s ability and increase their
e�ectiveness. There are limitations to the current technologies (displays [��] and
computer vision [�] for example). Barring these limitations, people increasingly
want to base their decisions on data at the location of the decision, such as a
purchase.
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Fig. �: Examples of Spatial Augmented Reality (SAR) [��,��,��]. The upper pair
of images show a one meter square physical model of the Taj Mahal (a) before
and (b) after augmentation via the shader lamps technique [��,��]. The lower
pair of images similarly show a vase (c) before and (d) after augmentation.

�.� Structure of the Chapter

This chapter starts by characterizing Situated Analytics in greater detail, includ-
ing the users, tasks, data, representations, interactions, and analytical processes
involved. A set of case studies of projects and products are examined that ex-
emplify best practice situated analytics in action. Extending the interaction
technologies of SA are the presented blended situated analytics controls with a
set of example applications. Based on these case studies, a set of derived design
considerations for building situated analytics applications are presented. Finally,
there is a an outline of a research agenda of challenges and research questions to
explore in the future.

� Characterization of Situated Visualizations

While visual analytics aims at supporting analytic reasoning through the use of
visualisations, situated analytics aims at supporting analytic reasoning through
the use of situated visualizations. This section introduces a conceptual framework
and a terminology that help characterize and reason about situated visualizations,
while temporarily leaving out the analytic aspects. This framework is based largely
on Willett et al. [��]��. The section first starts by explaining what it means for a
�� While the basic model is the same (Figure �), the text and definitions have been

fully reworked, and an illustration has been added to clarify the notion of embedded
visualization (Figure �). The interaction model (Figure �) is new.



Situated Analytics ���

data visualization to be spatially situated. It then discusses physically-situated
vs. perceptually-situated visualizations, embedded visualizations, and temporally-
situated visualizations. Finally, a model of interaction is presented.

�.� Spatially-Situated Visualizations

Since situated analytics involves data visualizations that are integrated in the
physical environment, a model of data visualization is required that accounts
for the existence of the physical world. The most widely used model of data
visualization, i.e., the information visualization reference model (or “visualization
pipeline”) [��, ��], essentially ignores the physical world. A conceptual model is
described that unifies two recently introduced models that capture the physical
world around visualizations: the embedded data representation model from Willett
et al. [��], and the beyond-desktop pipeline model from Jansen et al. [��].

Fig.�: Conceptual model of a spatially-situated visualization and analytics
(adapted from Willett et al. [��]).

The conceptual model is illustrated in Figure �. It covers both the logical
world (top) and the physical world (bottom). Black arrows show information
flows, while dashed arrows refer to conceptual relationships. Only information
that flows from the data to the end user is shown here—other information flows
will be covered in subsection �.� on interaction.

The flow of information starts with the raw data, on the top left. The concep-
tual model assumes that a visualization system turns this raw data into a visual
form that humans can understand (aæb). In information visualization, this pro-
cess is generally computer-automated and can be characterized by a visualization
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pipeline. The visualization pipeline applies a sequence of transformations to the
raw data until a final image is produced. The di�erent stages of the pipeline have
been covered extensively in the past [��, ��,��], but for the sake of simplicity,
Figure � shows the entire visualization pipeline as a single block.

Both the raw data and the visualization pipeline exist in a logical world. This
logical world relates to the physical world in two major ways [��]: through the
data’s physical presentation (b) and through the data’s physical referent (d).

A physical data presentation (or physical presentation for short) is “the
physical object or apparatus that makes the visualization observable” [��]. For
example, suppose a person is viewing data about a house for sale. The data
consists of information such as the house’s size, number of bedrooms, price, or
energy e�ciency. The visualization pipeline (Figure �, aæb) describes the process
by which this data is turned into a visual form (e.g., a bar chart representation,
a numerical table or a starplot). For the observer to be able to see it (c), the
visual form needs to be brought into existence in the objective world (b). A
physical presentation can be an image displayed on a particular computer screen
or projected on a particular physical surface, or ink on the surface of a newspaper
page. It can also be a physical artifact, e.g., a data physicalization [��]. Virtual
presentations as seen in AR systems will be discussed in subsection �.�.

The second way in which data is connected to the physical world is through
physical referents (Figure �-d). A physical referent is a physical object or physical
space to which the data refers [��]. In the case of our house buyer, the dataset
refers to a particular house that exists in the physical world. As the relationship
(d) is a conceptual relationship, a dataset can have many possible referents [��].
For example, one can decide that the house dataset refers to the house owner,
or to the headquarters of the real estate company that manages it. Both exist
in the physical world and could be at a very di�erent location than the house.
Finally, the physical referent may or may not be visible to the observer (e).

Whether the physical referent and the physical presentation are simultaneously
observable largely depends on whether they share the same space, i.e., on the
physical distance that separates them (Figure �-f). For example, our house buyer
can choose to visualize the house data on a laptop in her own house, in which case
the house of interest will likely be visually inaccessible. If in contrast, the user
stands in front of the house of interest and visualizes the data on her smartphone,
or if the data is visualized on a sign placed on the house, the distance (f) will be
small enough that both the data and its referent can be examined (c,e). In such
a case, the visualization is referred to as spatially situated.

A visualization is spatially situated if its physical presentation is close to the
data’s physical referent.

The term “close” is left vague on purpose, as spatial situatedness lies on a
continuum: the visualization shown on a sign placed on the house is spatially
more situated than the visualization shown on a bystander’s smartphone, which
is spatially more situated than the visualization shown on a desktop computer.
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Although the definition presented here is far from capturing the full richness
of the term “situated” (see, e.g., [�,��]), it has the merit of clarifying what is
situated with respect to what. It also clarifies that spatial situatedness cannot
be a property of the data, since data is a purely logical entity. Similarly, when
a visualization is referred to as being spatially situated or non-situated, this is
really referring to the physical presentation of a visualization system, not to the
visualization as a representation. For example, two di�erent smartphones can
display the same bar chart about car consumption data, with one smartphone
being far from the car and the other one being inside. While the two smartphones
show the same visualization, one is situated and the other one is not. For similar
reasons, it would be meaningless to ask whether a bar chart is a more situated
visualization than a scatterplot, at least within the present framework of spatial
situatedness. Other forms of situatedness will be discussed later in the chapter.

Finally, the conceptual model makes it clear that situated visualizations do
not need to assume a particular technology. A situated visualization can be
created with rudimentary means, e.g., by printing a visualization of a house’s
data and bringing the printout to the house. Conversely, an AR visualization
system can be non-situated, e.g., when two users interact with a �D visualization
that shows data about a physical entity located far away. It is clear, however,
that new and emerging technologies make it possible to create elaborate forms of
situated visualizations.

�.� Physically- vs. Perceptually-Situated Visualizations

The physical distance separating a physical presentation and its physical referent
may not necessarily match the perceived distance between them [��]. One reason
is that distances are perceived in a relative manner. Thus, a one-meter separation
may appear large if both the physical presentation and the physical referent are
small and the observer is standing close to them (e.g., visualizing data about a
rare stone), while the same distance could be negligible in the opposite case (e.g.,
visualizing data about a distant mountain).

Discrepancies between physical and perceived distances are very common in
AR setups [��]. For example, consider a person wearing an HMD who stands in
front of a house and sees a data visualization overlaid on the house. The physical
data presentation is literally the array of pixels on the surface of the physical
display worn by the observer, and could be dozens of meters away from the data’s
physical referent (the house). However, the AR system could be designed in such
a way that the visualization appears to physically coincide with the house.

The previous definition of spatial situatedness can be either left ambiguous
on purpose or refined to distinguish between physical and perceptual distance:

A visualization is physically situated in space if its physical presentation is
physically close to the data’s physical referent.

A visualization is perceptually situated in space if its (physical or virtual)
presentation appears to be close to the data’s physical referent.
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As stated by the last definition, perceptual situatedness can refer to virtual
presentations. For example, if a visualization is rendered next to a house using
an HMD, the visualization seen by the user is virtual rather than physical. Since
the physical/virtual distinction is not without conceptual di�culties [��], it is
often easier to consider the percept elicited by the physical presentation rather
than the presentation itself [��]. Thus, an alternative definition is as follows:

A visualization is perceptually situated in space if its percept appears to be
close to the percept of the data’s physical referent.

This last definition works for all setups, irrespective of the display technology.

�.� Embedded Visualizations

Fig. �: Examples of embedded and non-embedded visualizations (all situated).

Embedded visualizations are situated visualizations that are deeply integrated
within their physical environment [��]. Figure � shows examples of embedded
and non-embedded situated visualizations. If data about a house is shown on
a single visualization placed next to (or inside) the house as in Figure �-(a),
the visualization is simply situated. If, however, di�erent sub-elements of the
visualization align with di�erent sub-elements of the physical house (b), the
visualization becomes embedded. For example, energy consumption data could be
displayed within each room of the house, or next to every power socket. Thermal
isolation data could even be visualized as “heat maps” on the walls themselves
using AR displays or simply thermochromic paint. Willett et al. [��] discuss several
such examples of highly-embedded data representations, while Hanrahan [��]
and O�enhuber [��,��] specifically discuss physical implementations.
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A visualization is spatially embedded if each of its physical sub-presentations
is close to its corresponding physical sub-referent.

Embedded visualizations assume multiple sub-presentations that are aligned
with their corresponding sub-referents. Thus, if energy consumption is displayed
near each power socket, as proposed before, but a house only has a single power
socket, the visualization ceases to be embedded and becomes a regular situated
visualization. Conversely, it is possible to create an embedded visualization simply
by duplicating situated visualizations. For example, if the setup in Figure �-(a) is
duplicated across an entire neighborhood, the entire set of physical presentations
becomes an embedded visualization, as shown in Figure �-(c). The physical
referent becomes the set of all houses for sale, and each house becomes a sub-
referent. If, however, the same data is shown on a single visualization placed
somewhere in the neighborhood (e.g., as a map of all houses for sale), as shown
in Figure �-(d), then the visualization would be situated but not embedded.

�.� Temporally-Situated Visualizations

The same way data can be thought of as referring to a concrete region in space
(i.e., the region occupied by the physical referent), data can be thought of as
referring to a concrete region in time. For example, an energy consumption display
can show data for the present day, from the day before, for several consecutive
days (e.g., as a time series), or can even show forecast data about the future. This
region in time can be referred to as the data’s temporal referent. It is then possible
to compare the temporal referent with the moment in time a visualization is
observed, derive a measure of temporal distance, and characterize a visualization’s
temporal situatedness [��]:

A visualization is temporally situated if the data’s temporal referent is close
to the moment in time the physical presentation is observed.

An example of a visualization that is highly situated both spatially and
temporally is a car’s speedometer, because it is located within the data’s physical
referent (the car) and shows real-time data. A car’s mileage display is similarly
highly situated spatially but less so temporally, since it shows data about the
present but also about a large segment of the past.

�.� Interaction

Figure � shows the di�erent ways a user can interact with a spatially-situated
visualization. On any interactive visualization system (situated or not), an analyst
can generally interact with the visualization by altering its pipeline (a). Operations
such as filtering data, changing the visual representation, highlighting data points,
or zooming, are all modifications to the visualization pipeline and have been
extensively discussed by Jansen and Dragicevic [��]. Usually, these interactions
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Fig. �: Interaction with a spatially-situated visualization. Red arrows represent
possible flows of information from the user to the system. The flows (a) and (b)
are supported by any interactive visualization system (situated or not), while
the flow (c) is specific to situated visualizations.

are implemented through instruments, i.e. combinations of software and hardware
elements that interpret users’ actions into changes in the pipeline [�,��].

A second way of interacting with a visualization system is by directly altering
its physical presentation (b). While desktop visualization systems generally o�er
limited interaction possibilities at this level, physical visualizations can let users
filter, compare or reorder data by rearranging physical elements [��, ��]. In
addition, users can alter their percept of a physical presentation by moving it or
by moving around [��,��]. Thus, a rich set of interactions can take place in the
real world outside the visualization pipeline. Some of these physical interactions
can be sensed and reflected back to the pipeline (right black arrow on Figure �).

A situated visualization system o�ers a third mode of interaction through the
physical data referent (c). Not only does a situated visualization make the physical
referent observable, but it also generally makes it reachable and manipulable [��].
Thus, an analyst can use insights gained from the visualization to take immediate
action, such as fixing a thermal leak in a room or removing cancerous cells. In
contrast to visualizations that are not situated in space or in time, physical action
can immediately follow analytical reasoning and decision-making.

In case the physical referent is the data source and the system implements
real-time sensing (see Figure �-d), analysis and action can be intertwined. For
example, a thermal leak visualization could dynamically update itself as thermal
leaks get fixed, and assuming a su�ciently advanced technology, a �D body
scan visualization could update itself as cancerous tissue gets removed. In these
examples, the end user interacts with a visualization by modifying the data itself,
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Fig. �: A water tunnel visualization where a wing model can be rotated to examine
the impact of orientation on aerodynamism [��]. Here the physical referent is the
wing and the physical presentation is the set of water bubbles.

�.� Levels of Situatedness

[in progress] Situatedness is a multidimensional property, with each dimension
lying on a continuum. Level of spatial situatedness, level of spatial embedding,
level of temporal situatedness. Other forms of situatedness? Aurélien mentioned
the task, we need to discuss.

�.� Situated Analytics

Visual analytics has been defined as “the science of analytical reasoning facilitated
by visual interactive interfaces” [��]. Similarly:

Situated analytics refers to the science of analytical reasoning facili-
tated by situated visualizations.

�.� Situated and Immersive Analytics

As we have seen in Chapter X, there are two ways in which analytical activities
can be immersive: either perceptually or cognitively. Perceptually speaking, a
situated visualization can be thought of as more immersive than a non-situated
visualization because the user is exposed to extra perceptual (visual or otherwise)
information from the physical world. Naturally, a user is always situated in a
physical environment (e.g., a desktop computer user can be situated in an o�ce
space), and this environment can be extremely rich in perceptual information
(e.g., a messy desktop, a loud o�ce). However, in non-situated systems this
information is irrelevant to the analytic task — it is either filtered out if the user
is focused, or disruptive if the user is not. In contrast, for the user of a situated
visualization, a larger portion of the physical environment is task-relevant, and
therefore the user can be considered as perceptually more immersed in the task.
This is all the more true if both the physical referent and the visualization occupy

Fig. �: A water tunnel visualization where a wing model can be rotated to examine
the impact of orientation on aerodynamism [��]. Here the physical referent is
the wing and the physical presentation is the set of water bubbles.

a mode of interaction that classical visualization systems generally do not support.
Although in these examples the ultimate task is to take action on the physical
referent, this mode of interaction is compatible with purely epistemic tasks.
For example, an airplane designer could use a physical or virtual wind tunnel
visualization on a malleable or articulated model of an airplane, and physically
manipulate the model to explore how di�erent shapes or orientations impact
aerodynamism (Figure �).

�.� Levels of Situatedness

In situated analytics, situatedness is a multidimensional property, with each
dimension lying on a continuum. As previously discussed, a key element to consider
is the spatial situatedness of the data visualization employed, i.e., to what extent
its physical presentation is close to (or appears to be close to) the data’s physical
referent. When this distance is su�ciently low for the visualization to qualify
as spatially situated, a finer way of assessing its situatedness is by considering
its level of spatial embedding. As discussed in Section �.�, spatial embedding
captures to what extent the geometry of the visualization’s physical presentation
aligns with the geometry of the physical referent. Since spatial situatedness is a
necessary condition for being spatially embedded, spatial embedding can be seen
as a stronger form of spatial situatedness. For example, in Figure �, the setups a)
and d) are spatially situated but not spatially embedded, while the setups b) and
c) are spatially embedded. The level of spatial embedding lies on a continuum
and depends on several factors such as the number of physical sub-presentations
and their distance to their physical sub-referent. For example, a system that
overlays a continuous heat map on a physical surface to display its temperature
at every single point (e.g. using AR techniques or thermochromic paint) [��,��]
is more deeply embedded than a system that uses an array of thermometers.
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There are also non-spatial forms of situatedness. For example, the level of
temporal situatedness is a non-spatial form of situatedness, i.e., to what extent
the data’s temporal referent matches the time of observation. The interactions
supported (especially when the physical referent can be directly manipulated
for pragmatic or for epistemic purposes, as discussed in Section �.�) also likely
participate in the observer’s subjective impression of situatedness. Section � will
cover more specific examples of interaction styles involving the manipulation of
physical referents for epistemic purposes. For now we will go through simpler
and more classical examples of situated analytics systems.

� Examples of Situated Analytics

This section presents examples of situated analytics used in real world applications.
Key characteristics include situated virtual data and associated analytics.

�.� Pollution Monitoring

NoxDroid is a sensor system aimed at monitoring air quality in cities. As shown in
Figure �, NoxDroid is a small mobile sensor device built and mounted on bicycles
by volunteers. The sensor provides low fidelity real-time feedback on air quality
as people ride their bicycles (green: Nox level are well below the o�cial limit;
yellow: Nox level are just below the limit; red: Nox level is around or above the
limit). The sensor connects to an Android application to upload its data, share it
with others, and more advanced functionalities. This enables cyclists to analyze
pollution level and navigate in the sensor history through their mobile-phones,
in situation, and chose cycling routes accordingly.

Situated Analytics ��

�.� Fictional examples (to intersperse in the chapter)

Situated home finder with social media, crime, and demographics
Collaborative factory floor planning supporting many constraints
Selecting a lunch restaurant as a tourist based on Yelp and other sources
Coach making decisions for a soccer game
Bird watching
Location based applications
Situated visualization
Fitness wearables
Actual implementations (case study)

�.� Pollution monitoring

Aurelien

Fig. ��: NoxDroid situated analytics. Left: sensor with embedded pollution indi-
cators. Right: smartphone application with contextual measures.

NoxDroid is a sensor system aimed at monitoring air quality in cities. NoxDroid
is a small mobile sensor device built and mounted on bicycles by volunteers. The
sensor provides low fidelity real-time feedback on air quality as people ride their
bicycles (green: Nox level are well below the o�cial limit; yellow: Nox level are
just below the limit; red: Nox level is around or above the limit). The sensor
connects to an Android application to updload its data, share it with others, an
more advanced functionalities. This enables cyclists to analyze pollution level
and navigate in the sensor history through their mobile-phones, in situation, and
chose cycling routes accordingly.

Fig. �: NoxDroid situated analytics. Left: sensor with embedded pollution indica-
tors. Right: smartphone application with contextual measures.
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�.� Personal Protective Equipment (PPE) Donning/Do�ng

During ����-����, Prof. Greg Welch directed a small group of graduate computer
science students at the University of Central Florida in the development of
a system to allow volunteers around the world to help check the integrity of
personal protective equipment (PPE) being worn by healthcare providers caring
for patients with deadly viruses such as Ebola, before the providers come into
contact with any patients. See Figure �(a) for an example of a provider in their
PPE. The system, called SterilEyes, consists of a smartphone app and a back-
end server system that allows the provider to quickly capture video imagery of
themselves in their PPE, that is instantly made available to certified volunteer
observers from around the world who can instantly check the provider’s PPE
and vote on the quality of the protection over the entire body.

a b

Fig.�: Left (a): Example of healthcare provider wearing personal protective
equipment (PPE) such as would be used when caring for patients during an
outbreak of a deadly contagious disease such as Ebola. Right (b): Example
observer (crowd) analytics situated on the appropriate body parts.

The smartphone app would be used in two di�erent circumstances and
corresponding modes: the provider mode and the observer mode. After donning
the PPE, and before entering the potentially contagious space around the patient,
the provider or a colleague would capture video of the PPE on the provider—in
particular in locations known to be problematic such as the neck, wrist, and
ankle connections/seals. Each observer would be notified and if possible/willing
would respond by selecting each video—associated (situated) with a part of the
body—and rating it. Progressively, as the observers around the world respond, the
back-end system would calculate and update the displayed confidences associated
with each critical body location. See Figure �(b) for an early example of a
visualization presented to the provider as the observer votes evolve.
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�.� Future Farming

In a recent TechCrunch article [��], contributor Je� Kavanaugh discussed a
futuristic (but not far o�) vision for farming where sensors collect data about
plant and soil health for example, machine learning or approaches continually
perform some analytical analyses, and Mixed (Augmented) Reality is used to
allow a farmer to see and interact with the data in place to “help both farmers
and gardeners to monitor and manage crop health.” Kavanaugh also described an
Infosys open-source digital farming project called Plant.IO*. Kavanaugh describes
the vision where PVC pipes provide a frame for devices such as sensors and plant
growth lights, a remote server continually analyzes and predicts plant health,
and “AR-capable glasses” like the HoloLens could be used to both visualize crop
analytics in place and a�ect plant health via AR actuator interfaces that control
fertilizer, water flow, growth lights and more. See also http://plantio.de (website
in German).

There are additional elaborations on these ideas. For example, on the heels of
the TechCrunch article, Rob LaPointe of SDI presented some related ideas [��].
LaPointe pointed out how sensors for monitoring crops, weather stations, satellite
information, etc. can be cross-referenced to specific crops, and analyzed by AI
algorithms that are informed by the latest agricultural publications, with the
results being “wirelessly transmitted to a set of AR Goggles” that provide the
farmer with information about water, light, and fertilizer needs for each plant in
(or region of) the field.

Fig. �: Blended user interface.

� Blended Situated Analytics Controls

This section explores a particular style of situated analytics interaction method-
ology, Blended Situated Analytics Controls [��]. Existing solutions for AR inter-
action techniques provide users with a limited number of predefined interaction
perspectives for the presented data and the input controls are either static for all
objects or have a limited number of controls that can be associated. Working

http://plantio.de
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with abstract information in AR requires more methods of interaction than the
traditional approach, allowing the user to manipulate the data freely and explore
relationships between data in two di�erent spaces: physical and virtual.

The blended user interface is a promising SA tool, which fuses the controls
into the physical referents (physical objects), and derives the controls’ appearance
from the physical context, a�ording dynamic widget appearance and layout
techniques [��,��] (see Figure �). The appearance of the controls is dynamic
depending on their placement and function on the physical object. The novelty
of the techniques is their context-aware dynamic blending of physical/virtual
user interface controls allowing seamless transition between the physical and
information spaces. The blended user interface has three main components:
blended controls, blended views, and the blended model.

Fig. ��: Situated analytics blended controls. (a) Users can view the attached
information, (b) interact with physical objects to explore more information, (c)
and view/compare the information associated with multiple physical objects.

�.� Overview of Blended Controls

The blended controls allow users to �) view in a meaningfully fashioned abstract
data with their relationships and �) apply operations such as select, zoom,
search, filter, and analyze. Figure �� demonstrates the blended controls within
the context of a shopping task, enabling user exploration and interaction with
information in novel ways. In Figure ��-a, a user explores a product’s overall
information, presented to them as a virtual annotation overlayed on the top of
the physical box. Information of interest is highlighted—for example, if the user
is searching for Australian-made products, the Australian logo can be highlighted.
Figure ��-b shows a user interacting with the physical referent to explore more
information (Details-on-Demand). The user can explore information, such as
touching the ingredients listing printed on the product’s box, and the SA system
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will display additional detailed visual analytical information as an AR overlay.
This information representation is based on the product’s ingredients (for example,
the percentage of the user’s daily recommended intake (RDI) for a nutritional
category such as sugar or fat that the product contains). SA also allows a user
to analyze and compare information between products (seen in Figure ��-c). As
an example, when a user selects two products and places them side-by-side, the
SA system presents a comparison of the two products to the user.

Fig. ��: Blended zoom.

Blended interactions di�er in that the user is not restricted to the planar
screen of a tablet device, keyboard, or an indirect pointing device. Instead, the
user is guided by the form factor of the underlying physical referent such as a
product box, physical lever or button, or tangible artifact. The user is therefore
not disconnected from the physical referent as in the mid-air interactions. In
this scenario, the haptic feedback is given through the product while an HMD
provides the overlay of visual information. Figure �� depicts the user employing
the pinch gesture, zooming on a supermarket product to provide an easier to read
portion of the label. Using context-aware blended controls alters the assigned
UI control. For instance, a blended selection can be altered based on the ratio
between the width and the height of the tracked image. Figure ��-a shows a
calculation of the percentage of the juice in the cup, computing the calorie content
by using the one-dimensional slider. In the box scenario, the type of slider for the
same operation has been changed; a two-dimensional slider has been used due
to the physical shape of the box (Figure ��-b). This shape adaptation feature
reduces the complexity of UI design, enabling the storing of the UI properties
and constraints, which will automatically blend the relevant UI components to
the physical referents.

Blended interaction can also provide intuitive interaction with the physical
space, such as proximity and collision. Proxemics is an interaction based on the
user’s view, by calculating the distance between the user’s view and the tactile
physical referents. By moving the referent nearer and further to the user’s view,
the amount of data presented changes. Where holding a physical referent closer
the user’s view, this closer view reflects an interest in the object. Figures ��-a and
��-b show an implementation of proximity exploration, between overview and
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(a) (b)

Fig. ��: Blender sliders changing their appearance based on the physical object’s
shape.

detailed representations. The overview shows the book’s ranking, and the detailed
view shows the book’s table of content. Through an AR display, the user can
see the virtual overview annotation (see Figure ��-a), and by bringing the book
nearer to the user’s view, this will invoke the detailed view. The registered table
of content is color-coded based on the user’s query and preferences, as the green
shows highly related book sections moving towards red for the least preferable
ones. The white text means that the section title is not about the user’s entered
query (see Figure ��-b). Another example is shown in Figures ��-c and ��-d
demonstrating depth-level adaptation to override the small FOV challenge of the
optical see-through devices. The technique arranges the data into multi-layers
controlled by the distance between the user and the physical referents. Proxemic
interactions invoke the visualization based on the cue’s ratio to the physical
referent’s size. When the physical object is near to the user, its size will increase,
which will invoke more visual cues.

Collision is an interaction based on the spatial relationship of multiple objects
to provide information pertinent to the objects’ combination. Collision can be
to aggregate the virtual data associated with the physical referents. Figure ��
depicts a collision-based example, allowing the user to calculate the total calorie
intake of two products by aligning the physical objects side-by-side. As the user
calculates the total star point of two products, by putting them side-by-side.
When the user holds the chips by the crackers box, it shows a low star point
value, a low nutrition outcome. Then the user checked the juice with the cracker
by aligning the juice by the crackers box, which showed a better star nutrition
value than the chips combination.

�.� The Blended Views

The blended views hold the GUI elements and are responsible for generating the
blended widgets. The uniqueness of the blended views is attaching the widgets
and the visuals based on the physical context to leverage their meaning. The
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(a) (b)

(c) (d)

Fig. ��: Proxemic interaction.

semantic fusion of the UI elements to the physical world allows physical referents
to be part of the interactive information process, working in concert with the
controls to achieve the blending aim. Figure �� shows a blended menu that
changes its appearance and items based on the physical context. The menu can
be dragged and relocated to any place on the physical referents, with dynamic
size, shape, and color of the menu based on the physical context. These menus
use pre-stored regions’ meta-values to restrict the location of the menu on the
physical box.

(a) (b)

Fig. ��: Collision interaction to combine products’ nutritional value.
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(a) (b)

(c) (d)

Fig. ��: Blended menu.

�.� The Blended Model

The blended model allows a two-way, real-time association between the physical
and the virtual information, enabling contextual and situation awareness for the
interactive information process. Figure �� depicts the user experience during a
series of interaction states in the blended space for picking a meal. The user
moves between the states based on the predefined parameters, defining the
invoking trigger for each state, permissions, and parameters associated with the
mapped contextual feature. In Figure ��-(a), the user moves the AR display
with a camera to scan products on the shelf and select the product. The selected
product is highlighted by a green frame. In Figure ��-(b), the user takes one of
the products o� the shelf, as they are interested in more detailed information
about this particular product. This user’s interaction will invoke a detailed view
of the product; the user is holding, enabling region selection. The user selects the
product’s logo, then tilts the box to select the flavor region. Finally in Figure ��-
(c), the user starts to interact with two fingers on the box surface, the interaction
control changes to a magnifying pinch zoom.

� Design Considerations for Situated Analytics Systems

This section discusses design considerations for SA. As usual when designing
interactive systems, no single perfect solution that would fit all intended use cases
exists. The design of SA systems must account for the physical environment,
data, and viewers with which it will be used, as well as the presentation and
sensing technology used to implement it. However, because only a small number
of SA systems have been developed so far, few guidelines and best practices
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(a) (b)

(c)

Fig. ��: Interaction states in the blended space.

for situated tools currently exist. This section goes on to discuss a variety of
practical design decisions that, based on the authors’ experience, have important
trade-o�s and repercussions for situated tools. The discussions are structured
around the components of situated analytics systems as introduced earlier in this
chapter (see Section � Characterization of Situated Visualizations). The section
starts by discussing components of the physical world—the physical referents, the
physical presentation, and the users—and then discusses design considerations
for components in the logical world—the data and the visualization pipeline.

�.� Physical World

Situated analysis tools are characterized by their relationship to the physical
world. As a result, these tools must account for the environments and physical
referents to which the data are related. Moreover, the visual feedback from
SA tools themselves must ultimately emanate from some source (typically an
object, projector, or display) in the physical world. Therefore, the design of
situated tools must take into account the physical characteristics of the referents
and environments with which the systems will be used, as well as the physical
limitations of the presentation technologies, such as with Blended Situated
Analytics Controls.

Physical Referents and Environments. Essentially any object, person, or
environment can potentially become a referent, given a dataset that somehow
relates to them. However, some referents and environments lend themselves more
readily to situated analysis than others.

Size and visibility. In some cases, the physical and visual characteristics of
the referents themselves may dictate whether or not situated analysis is practical.
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For example, referents that are very large or very small may be di�cult to
examine or compare and, as a result, may not provide useful context. Similarly,
situated analysis may be challenging in cases where environmental constraints
like distance or occlusions make it di�cult or impossible to examine important
physical referents simultaneously.

Identifiability and dynamicity. Similarly, the viability of a situated anal-
ysis system may be dictated by how easy it is to distinguish, track, and connect
physical referents with data about them. In order to display the appropriate data
in context, it must be possible for either the system or the viewer to identify
corresponding referents and environments. As a result, environments with many
similar referents or high dynamicity (such as quickly moving swarms or crowds)
may pose serious implementation challenges.

Safety and security. In other situations, the risks to the physical safety of
viewers and those around them need to be considered. Situated analysis may
not be viable in locations where visual augmentations might distract viewers’
attention away from the environment and disrupt critical tasks like driving, flying,
or operating machinery.

Physical Presentation. When considering the design of a situated system, one
of the most important decisions is whether to display information virtually—using
projection or overlays that are visually superimposed on top of the environment—
or physically—via physical output mechanisms that are situated in the environ-
ment itself. This distinction is not strictly binary. For example, physical screens
placed in an environment may be concrete objects, but provide largely virtual
content. As a result, the choice to situate data displays via primarily physical or
primarily virtual means will likely have a considerable impact on the scalability
of the system, as well as the kind of observations and interactions it supports.

Virtual output. At one extreme are overlays produced by HMDs. While
these kinds of hardware can make it possible for wearers to superimpose data
on top of environments and objects, the relationship between the presentation
and referent is purely visual and largely individualized. As a result, the physical
presentation provides no tactile or physical feedback and has no direct physical
relationship in the environment. Computer vision and other tracking techniques
can be used to align virtual overlays and controls with specific physical referents
(as with Blended Situated Analytics Controls [��]). However, correctly aligning
presentations and referents can be challenging in complex environments, and
providing appropriate depth cues and haptic feedback may be di�cult.

This degree of independence may be useful in situations where an analytic
system needs to display very large numbers of data points, or where data must be
displayed in areas with no corporeal physical referents. Virtual displays can also
deal with environments that contain dynamic referents whose form or identity
may change over a short period of time. Tasks like displaying data about tens of
thousands of parts in a manufacturing plant or visualizing air quality data in
the center of an open space may benefit from these kinds of virtual presentation
mechanisms. In fact, virtual presentations may be the only viable options if
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referents are physically very large or small, or if they are fragile, distant, or
otherwise inaccessible.

Physical output. Alternatively, more concrete physical presentations may
be beneficial when analyses are centered around a smaller number of stable
referents. In these cases, presenting data via physical output in the real world
may support a more direct coupling between the information and the referents it
relates to. Displaying visual output via displays which are physically attached
to their referents provides an immediate coupling between data and context,
and can make it easier for viewers to examine the two simultaneously. Tight
physical connections may also provide more physical a�ordances for interaction,
making it easier for viewers to interact with the analytic tools using the referents
themselves as input controls.

Physical output may also be helpful in collaborative situations where multiple
viewers need to examine and interact with the analytics tools simultaneously.
Because physical presentations preserve real-world visibility and interaction cues,
they may make it easier for individuals to understand what their collaborators
can see and manipulate, and what they cannot. However, physical outputs like
these are also more di�cult to secure, especially when displays are not dynamic
or the identities of viewers cannot be determined. In these situations, systems
may need to rely on restricting physical access to the space or encoding data
displays to reduce their intelligibility.

More generally, physically attaching presentations of data to referents may be
a practical technical solution—especially in situations where the set of referents
is human-scale, small in number, and relatively static (small numbers of people,
animals, tools, objects, rooms, etc.). In these cases, physically associating data
presentations with their referents may eliminate or reduce the need to track the
referents’ locations in order to display data at the right place and time.

Embedded vs. Situated Output. When designing situated analysis tools,
developers may also need to consider the degree to which the system is connected
to individual physical referents. On one hand, systems may be only lightly
situated—presenting data in a relevant environment, but ignoring the specific
orientations and positions of related people, objects, and spaces. Alternatively,
systems can be more deeply embedded, placing presentations of data on or near
their referents. Determining what kind of embedding is appropriate may depend
not only on the available presentation technologies but also on the complexity of
the environment and viewers’ likely tasks.

Embedded. Choosing to embed presentations of data directly alongside
their corresponding referents may present a number of benefits. For example,
embedding output on or near relevant objects, people, and environments can
make it easier for viewers to understand the relationship between data and
physical referents, and take action based on it. Doing so also increases the
likelihood that viewers can correctly identify which referent the data corresponds
to. Similarly, embedding makes it easier for viewers to perceptually integrate



Situated Analytics ���

information from the dataset with relevant contextual information from the
physical environment [��].

Situated. In contrast, situated views may often be less technically di�cult
to implement—as they only need to be presented in the appropriate environment
at the right time, but do not need to be aligned with the individual referents
in any particular fashion. In fact, simply placing an existing data display or
analysis tool into an appropriate environment (for example, on a phone, tablet, or
head-mounted display) can be enough to produce a situated analysis experience.
Using a purely situated approach also ensures that the presentation of data is
not limited by the physical positions of the referents. As a result, this strategy
can make it easier to guarantee that viewers will be able to see and access the
data, regardless of the environmental configuration.

Users. Important design decisions need to be made when considering who will
be the end user(s) of the system. Will it be a single person or does the system
need to be able to accommodate multiple users? If it is a multi-user system, will
these users collaborate or work in parallel? Should all users be able to access
the same data or are there restrictions on who can access what data? While
some of these questions have already been mentioned above when considerations
were discussed for choosing physical presentations, the discussion now focuses on
considerations taking the users’ point of view.

Privacy and collaboration. Situated analytics can be performed on many
di�erent types of data. Some of these data can be private or confidential and
may need to remain hidden from other people sharing the same environment—
a problematic shared with any “sensing system” [�]. Privacy can be assured
implicitly by using an HMD instead of publicly visible displays. Yet such HMDs
make collaboration more di�cult as they require that each collaborator have
their own device. Furthermore, content and changes need to be dynamically
coordinated across all of the individual displays. As a result, this type of setup
can make it more di�cult for multiple users to determine whether they are seeing
the same data. Thus, shared situated displays may be preferable for applications
that involve collocated collaboration.

Access-controlled environments, for example in a corporate setting, present a
special case, particularly if the SA system has access to information on who is
allowed to view what data and who is currently in a room, for example, through
tracked badges [��]. In such cases, a SA system could ensure confidentiality by
adapting the visual output so that it shows only content accessible to all current
viewers. In turn—with HMDs—data with di�erent levels of detail can be shown
to di�erent people according to their access rights without requiring them to
leave the physical environment before certain data can be viewed.

�.� Logical World

When creating situated analysis tools, designers and developers must also consider
the logical world—including the data and the visualization pipeline. While these
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underlying constructs are shared with other non-situated visualization systems,
situated analysis tools introduce a number of new complexities.

Data. Data in an SA system are viewed in spatial proximity to the physical
referents. Beyond spatial proximity, temporal proximity of the data can be
relevant as well. For example, White and Feiner report a small field study where
their users would have preferred to access real-time data about air pollution in
a city instead of “stale”, previously made measurements [��]. In cases where
the intended purpose of the SA systems is to (possibly) take action in the
physical environment, for example, to explore how such modifications a�ect
sensor readings, live data become crucially important.

Tracking physical referents. In order to display data at the appropriate time
and place, situated tools may require considerably more information about the
environment in which they are used than traditional analysis tools. Desktop data
analysis packages can render the same visual output on a wide variety of di�erent
commodity hardware regardless of their surroundings. In contrast, situated tools
will typically display di�erent information (often in di�erent configurations)
depending on where they are used. As a result, situated tools need mechanisms
for uniquely identifying and tracking physical referents around them, and for
associating referents with related data. This means that SA tools may often need
more elaborate data models that can represent referents as logical objects within
the system, as well as mechanisms for authoring and updating relationships
between referents and data. Unless the visual output of an analysis system is
physically connected to the referents, systems must also be able to track and
process referents’ position, movement, and visibility, and use this data to update
the situated presentations in real time.

Visualization pipeline. The visualization pipeline transforms the data into a
visual representation that can be displayed using physical presentations as was
discussed earlier. The physical presentation and the physical referents need to
be taken into account when designing the visualization pipeline. Particularly,
the geometry of the physical referents and physical presentations are important
to consider when choosing appropriate visual encodings to ensure that the SA
system informs but not hinders users’ actions.

Visual encodings. Most of previous work studying the perception of visual
encodings focused on two-dimensional encodings which are best adapted to
the presentation of �D screens. With situated analytics, data are shown in
physical, three-dimensional environments thus it may be beneficial to consider
�D encodings for such systems especially in the case of head-mounted displays or
physical output. White and Feiner [��] gauged preferences from their field study
users who expressed a preference for representations that facilitated making the
link between the location of sensor readings and their value. For example, they
preferred the use of spheres over cylinders to represent sensor readings associated
to a particular position in �D space.
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A first study on size perception of physical �D marks found that the size
perception of �D bars and spheres is not—as previously assumed—systematically
biased if an appropriate transfer function is chosen [��]. However, if the physical
referents feature flat �D surfaces, then a �D visual encoding matching these
surfaces would be preferable. Yet prior work on the perception of two-dimensional
visual marks displayed on large wall displays suggests that these are not accurately
perceived when viewed at a non-perpendicular angle [�].

�.� Summary

Situated analytics is an emerging theme and as of yet few empirical studies can
give validated advice on how to best design such systems. This discussion refrains
from making prescriptive design recommendations and instead focused on laying
out the di�erent aspects a designer of a situated analytics system should consider.
At the same time the need for more empirical studies illustrates rich research
opportunities within situated analytics. The open challenges are described in the
next section.

� Challenges and Research Agenda

Analytics moving into “the real world” raises challenges at multiple levels: tech-
nical ones, methodological ones, and conceptual ones. As has been seen in the
previous sections, new typologies of analytical tasks are also emerging to account
for a more “casual” approach to analytics. People conducting analysis in short
situated bursts instead of long focused sessions in front of a computer. Supporting
new analytical tasks should lead us to rethink how we design analytical tools,
i.e., how do we prototype situated tools, and how we evaluate them. Besides new
design methods, conceptual tools and technical frameworks will be needed to
support development of these tools.

The envisioned pervasiveness of SA will require attention to new domains.
Understanding expert tasks will not be enough, and designers will have to consider
pleasure, engagement, or social acceptability. Finally, we should not forget to
ask, what are the benefits and limitations of Situated Analytics, i.e., when is it
worthwhile to o�er such analytics, and when would people be better o� with
traditional analytics tools? There are clear trade-o�s in terms of attention and
information overload, privacy risks, and ethical concerns in case badly situated
analytics could reinforce prejudices by only displaying a partial view of the
situated data.

�.� Visual Display

The emergence of novel display form factors and capabilities bears a direct impact
on possibilities latent in Situated Analytics. From using HMDs to pico-projectors
that facilitate group-based sense-making, necessary consideration needs to be
placed on where to project information, how to embed content in the environment.
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There is a di�erence between personal and group-based displays. In terms of
personal displays, attention is needed to issues involving color blending (for
superimposing virtual content on physical objects) [��], on issues of environmental
saliency to suitably embed content [��], as well as on placement strategies for
e�ective interaction with content. In terms of group-based displays, attention is
needed on identifying how best to position the display to suit group work [��], on
how best to o�er shared displays with HMDs [��], and approaches for facilitating
group interaction. With current advances, many of the above areas can be further
explored in more depth. For example, brighter displays a�ect how content can
be fused into the environment and advances in steerable pico-projection can
facilitate more fluid approaches to SA.

�.� Interactions Techniques

One primary challenge that needs addressing is the design of novel interactive
tools for SA. Unlike traditional desktop environments, where devices and tools
have been entrenched in the fundamentals of areas such as visual analytics,
interaction interfaces and devices for SA is uncharted territory. As described
above, one approach could include the use of Blended Situated Analytics Controls
that fuse the user’s interaction onto the physical objects in the environment.
Such an approach relies on no more than the sensors HMDs are already equipped
with, and thus o�ers an attractive solution for SA interactivity. However, when
the embeddings are loosely connected to the physical objects, such as an entire
environment, novel approaches are necessary. Ens and Irani [��] o�er a preliminary
discussion into the types of interactive devices possible for situated analytics.
These include finger-worn sensors [��], digital pens [�], on-body interactivity [��]
and the use of physical objects, that can be tracked by the displays worn by
users [��]. Such forms of devices have shown little application to SA, and therefore
re-examining these from the standpoint of specific usage scenarios (see Section �)
in SA is an important first step. Furthermore, such forms of interactivity have
not been explored in the context of mobility or applications involving Augmented
and/or Virtual Reality. Therefore pressing questions include: “can such devices
be appropriated for tasks in SA?”, “what environment properties a�ect the use
of such forms of interactivity?”, “how can such interfaces be made more e�cient
and optimized in the context of SA?”. These and other questions can formulate
the basis of a new research agenda in Situated Analytics.

�.� Rethinking the Design Cycle

Designing visual analytics tools has traditionally centered on answering the
specialized needs of experts. Situated analytics shifts the focus from experts
to a much broader user population. Moreover, the context for which to design
is also much more ill-defined. If visual analytics is typically conducted on a
desktop computer with mouse and keyboard, exceptionally on a large wall display,
situated analytics is, by definition, associated with any possible context. This
radically changes the way analytical tools should be designed. New methods are
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needed to better account for the situated aspect of visualisation: consider space,
consider the unexpected, consider social acceptance, etc.

With ill defined tasks, the design process cannot rely as heavily on the
collection of requirements, and the specification of needs. Designers will have to
explore opportunities for design in a much more iterative way, sketching possible
applications, testing them out and figuring whether they fit the needs of people.
Such an iterative process requires new tools that enable quick sketch solutions to
explore a design space.

Beyond sketches, developing fully functional situated analytics tools is still
particularly complex, and costly. New frameworks guiding development, o�ering
ready to use building blocks, could speed up development significantly.

Finally evaluation methods whether it is for early sketches or fully fledged
applications must be refined. Because of the situated nature of tools, evaluations
methods will have to incorporate some forms of field work to assess situated ana-
lytics applications on open-ended activities. This di�ers widely from well-defined
tasks typically supported by visual analytics, for which methods to measure time,
errors or insights have been developed. Reference the evaluation chapter

� Future Work

Situated analytics is a new and emerging research field. Investigations are required
into new display technologies, application domains, forms of data, interaction
methodologies; just to name a few. Two particular research directions of interest
are moving beyond spatial situatedness and tackling the ethical challenges this
new research field presents.

�.� Moving Beyond Spatial Situatedness

Situating analytics in the physical space, i.e., spatially close to the objects
of interest, is the predominant strategy used for situated analytics. Section �
discussed alternative dimensions, such as using time as the frame of reference.
However, these physical dimensions only account for a limited part of users’
situation. In the field of ubiquitous computing, situatedness has often be modeled
alongside several dimensions describing what is generally referred to as Context.
The notion of context helps to account for broader phenomena and people’s
activity.

For instance, while picking up a citybike at a station, the relevant information
may not be the availability of bicycles in the pick-up spot since the user can
already see whether there are free bicycles in its surrounding, but the number
of free spots at the destination so that the user can adjust the travel goal, to
the closest station with free parking spots. To develop a better understanding of
people’s intention, context should include information about the people involved
in the activity, the set of devices available, the active applications, as well as
sensor information such as light, noise, or temperature.
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With such an understanding of context, it becomes possible to bring analytics
relevant to users’ activity rather than their location. For instance, a museum
guide and visitors could benefit from SA about an art piece they stand in front
of while touring the museum. But as the guide goes through the museum after
hours with colleagues, to revise the guiding plan, they might get more relevant
analytics about the time visitors spent in front of the piece, what other pieces
they were interested in, etc. At the same location, situated analytics could take
various form depending on the activity people are involved in.

�.� Ethical Challenges

Widespread use of SA raises a number of ethical concerns that we should be
aware of and ideally consider in the early phase of any project. Situating analytics
whether it is in space, time or activities requires having rich datasets that have
such detailed properties. Situated visualizations of the books borrowed in a library
could be highly valuable to patrons, but could also lead to “leaks” revealing
sensitive books rented by individuals. Similarly, SA of health related information
could improve patients’ understanding of treatments, their adherence, and their
overall experience of illness, but capturing sensitive information about health
and “projecting it into the world” should be done with extreme care to potential
side e�ects.

Another concern of SA relates to the reinforcement of prejudices. Data
collection is never exhaustive, and datasets o�er a partial view of reality, however
faithful we try to be. Selectively displaying data, is a way to introduce some
prejudice by over-emphasizing some elements. For instance, designers working on
urban situated analytics could decide to display information about criminality,
but only display crimes against people or property, and not white-collar crimes
which is harder to locate physically, leading to an emphasis on crime from a given
population, while ignoring another.

� Conclusion

As discussed in Chapter ?? and described above, there are two ways in which
analytical activities can be immersive: either perceptually or cognitively. Percep-
tually speaking, a situated visualization can be thought of as more immersive
than a non-situated visualization because the user is exposed to extra perceptual
(visual or otherwise) information from the physical world. Naturally, a user is
always situated in a physical environment (e.g., a desktop computer user can
be situated in an o�ce space), and this environment can be extremely rich in
perceptual information (e.g., a messy desktop, a loud o�ce). However, in non-
situated systems this information is irrelevant to the analytic task — it is either
filtered out if the user is focused, or disruptive if the user is not. In contrast, for
the user of a situated visualization, a larger portion of the physical environment
is task-relevant, and therefore the user can be considered as perceptually more
immersed in the task. This is all the more true if both the physical referent and
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the visualization occupy a large area (e.g., a tourist who walks in a city and
explores city data using an AR display). This perceptual immersion and the
relatively lower proportion of task-irrelevant stimuli can reduce the opportunities
for distraction, and in turn increase the likelihood of being cognitively immersed
in the analytic task.

This chapter defines a new method of Immersive Analytics referred to as
Situated Analytics. The concept is characterized in greater detail, including
the users, tasks, data, representations, interactions, and analytical processes
involved. A set of case studies is examined in detail to elicited the best practices
for situated analytics in action. Blended situated analytics controls are detailed
as a particular method of developing situated analytics user interactions. A set
of derived design considerations for building situated analytics applications is
described. A research agenda of challenges and research questions to be explored
in the future are presented.
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